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a b s t r a c t

The effects of combined driving and vehicle-to-grid (V2G) usage on the lifetime performance of relevant
commercial Li-ion cells were studied. We derived a nominal realistic driving schedule based on aggregat-
ing driving survey data and the Urban Dynamometer Driving Schedule, and used a vehicle physics model
to create a daily battery duty cycle. Different degrees of continuous discharge were imposed on the cells
to mimic afternoon V2G use to displace grid electricity. The loss of battery capacity was quantified as a
function of driving days as well as a function of integrated capacity and energy processed by the cells.
eywords:
123 systems
i-ion battery
ehicle-to-grid
attery degradation

The cells tested showed promising capacity fade performance: more than 95% of the original cell capac-
ity remains after thousands of driving days worth of use. Statistical analyses indicate that rapid vehicle
motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are intended
to inform an economic model.
HEV
iFePO4
ehicle battery testing profile

. Introduction

One suggested benefit of plug-in hybrid electric vehicles
PHEVs) or battery electric vehicles (BEVs) is to provide electricity
or off-vehicle use, “vehicle-to-grid” (V2G) services, when parked
1]. These benefits might include peak load shifting, frequency
egulation and other ancillary services, smoothing variable gener-
tion from wind and other renewables, and providing distributed
rid-connected storage as a reserve against unexpected outages.
o determine the financial and technical feasibility of these appli-
ations, it is essential to quantify the effect of this kind of usage
n battery degradation and performance. Most previous measure-
ents have indicated that Li-ion battery capacity decreases as a

esult of cycling, and the magnitude of this loss is dependent on
oth the number of cycles and the depth of discharge (DoD) that the
attery is subjected to during these cycles [2]. While these charac-
eristics are well understood for the LiNiCoO2/graphite-based cells

sed in the consumer electronics market (as well as for lead acid
nd NiMH systems), there is far less published data for the current
nd next generation of high rate cells that may see wide adoption in
HEV and BEV battery packs. Those data that have been published
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indicate it is possible to make Li-ion cells with much less capac-
ity fade and dependence on depth of discharge than is commonly
assumed [3]. However, these results are insufficient to determine
the economics of V2G energy sales because they are from cycling
that is not representative of battery use for driving and battery use
for grid energy.

To provide more representative data, we examined the bat-
tery degradation of a battery cell already being implemented in
the PHEV Hymotion battery pack (an aftermarket PHEV conver-
sion), the A123 systems ANR26650M1 cell. We have examined the
response of multiple sets of these cells (from different lots) to gauge
their behavior in both simulated driving and combined driving/V2G
energy sales modes. Our ultimate goal is to determine the perfor-
mance and financial costs associated with cycling for V2G energy
use in combination with a typical PHEV driving duty cycle. Simulat-
ing the actual discharge pattern also has enabled us to determine if
there is a difference between dynamic discharge (representing the
driving) and constant discharge (energy arbitrage) using statistical
analyses.

2. Experimental
2.1. Driving profile created with data taken from NHTS

The energy arbitrage potential of a vehicle battery depends on
both the usable capacity and the fraction of the pack used for daily

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:whitacre@andrew.cmu.edu
dx.doi.org/10.1016/j.jpowsour.2009.10.010
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Fig. 1. The daily driving profile used in cell testing. This profile is an aggregate of
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riving, while the lifetime cost of performing energy arbitrage will
epend on how the pack degrades as a function of use mode. To
xperimentally quantify this, a nominal urban driving/V2G power
rofile and correlated battery test regime was derived by combing
everal common data sets. A representative urban commute driv-
ng duty cycle was constructed, using data from the 2001 National
ousehold Travel Survey (NHTS) of 70,000 households [4]. To do

his, we created a data set from the NHTS day trip file tabulating the
aily trip profile of a vehicle. The day trip file contains “data about
ach trip the person made on the household’s randomly assigned
ravel day” [5]. These trips include walking, taking public trans-
ortation, driving, or any other means of travel. We extracted only
he trips taken by vehicles owned by households and eliminated
rips taken at the same time by different members of the household
n the same vehicle. This resulted in a new data set that tabulates the
aily vehicle trips, instead of those of individual household mem-
ers. The number of vehicles owned by the household is included

n the day trip files, and only vehicles that were driven were used
n the trip calculation.

The vehicle information data set was then cross-referenced to
ppend vehicle-specific information, such as the age, fuel econ-
my, and other relevant information. Vehicle-specific information
as used to check for potential trends that might indicate that the
HTS data would not apply to PHEVs; none were found. Three cities

n the Northeastern quadrant of the United States were selected:
oston (BOS), Philadelphia (PHL), and Rochester, NY (ROC). These
ities were chosen because they are located in three different elec-
ricity markets and because they each had a high number of NHTS
articipants. The median number of trips taken on a given day by
ehicles driven in each of the three cities was four (the mean was
.46 for cities combined). For this reason, only vehicles which took
our trips were thereafter considered in the determination of the
epresentative profile. The median start time, duration, velocity,
nd distance of each trip in the three cities are listed in Table 1.
ecause the three cities had similar median trips, the data from all
hree cities were combined to make a single trip profile (Fig. 1).
he total distance traveled was 29 km (original data in miles) when
ombining all four trips. This is similar to the result obtained if the
ame analytical steps are applied to the entire NHTS data set (total
istance of 29 km; however trip start times and velocities vary).

.2. Model constructed to replicate the energy use profile for

riving

To determine the quantity and rate of energy transferred to and
rom a battery during driving conditions, we constructed a simple
hysics model that computed the energy needed to propel a typi-

able 1
rip characteristics for three cities modeled and combined data used for battery testing.

City Trip Start time Duration (

BOS 1 8:48 14
2 12:28 14.5
3 15:00 10
4 17:30 14.5

PHL 1 9:00 15
2 12:04 11
3 15:15 10
4 17:00 15

ROC 1 8:43 15
2 12:30 12
3 15:40 10
4 17:30 15

Combined 1 8:45 15
2 12:16 12
3 16:30 10
4 17:20 15
data taken from all three cities included in study and represents all trips taken during
the day (horizontal portions show when vehicle is parked, while diagonal portions
represent driving).

cal vehicle through the NHTS trip profile. As an input to this model,
the vehicle distance/velocity profile in each trip was created by
sampling the Urban Dynamometer Driving Schedule (UDDS) and
overlaying these segments into the average NHTS distance vs. time
profile [6]. The 1370-s long UDDS profile was doubled in length
to allow contiguous selections to span from the end of original
UDDS profile to the beginning. These selections were portions of
the UDDS profile, and significant fractions were repeated multiple
times (Fig. 2).

To calculate the power vs. time battery duty cycle needed to
achieve this velocity/acceleration profile, the vehicle was assumed
to have the physical characteristics of a 2008 Toyota Camry; the
mass was 1588 kg (3500 lbs), coefficient of drag of 0.28 and a frontal
area of 2.7 m2. The dimensionless coefficient of rolling resistance
for the tires was assumed to be 0.01 [7]. This coefficient relates
the resistance to movement as a function of normal force. The
efficiency of power transfer from regenerative braking to batter-
ies was assumed to be 40%, the efficiency from battery to wheels
was assumed to be 80% [8]. The battery pack energy capacity was
assumed to be 16 kWh (as in Chevrolet’s proposed Volt) [9]. The
density of air was taken from the US standard atmosphere at sea

level.

An 800-W constant load was added to account for the power
needed for all activities unrelated to movement such as heater, air
conditioner, radio, lights and other accessories [10]. The total load

min) Average trip velocity (kph) Distance (km)

38.6 7.2
33.9 8.0
32.2 6.4
32.2 6.4
38.6 6.4
38.6 6.4
32.2 6.4
32.2 8.0
45.1 9.7
38.6 8.0
38.6 6.4
41.4 8.0
38.6 8.0
38.6 6.4
34.8 6.4
38.6 8.0
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Fig. 2. Portions of urban dynamometer driving schedule (UDDS) were chosen to closely match driving profile shown in Fig. 1 in terms of duration and average velocity.

Table 2
Forces considered when calculating energy use for PHEV in charge depleting mode.

Force considered Equation Example: velocity = 10 m s−1 acceleration = 1 m s−2
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Acceleration F = ma
Air resistance Far = 1/2�v2CdA
Rolling resistance Frr = Crrmg

very second was therefore obtained by adding the 800-W load to
he power necessary to achieve the velocity defined in the UDDS.
he force needed as a function of time to achieve the UDDS target
peed is a summation of the forces listed in Table 2.

If the acceleration is sufficiently negative (indicating braking),
hat its absolute value is greater than air resistance and rolling
esistance combined, then regenerative braking is occurring and
he power values for motion are given by Eq. (1). The regenerative
alue will therefore be negative and indicates battery charging. Eq.
2) describes the necessary power for cases where no regenerative
raking occurs:

ower = (ma + 1
2 �v2CdA + Crrmg) 0.4 × v (1)

ower = (ma + 1
2 �v2CdA + Crrmg) × v

0.8
(2)

sing this model, we compute that the vehicle would use 31% of
ts battery pack capacity to drive the derived 4-trip profile, with
.28 kWh/mile being withdrawn from the battery on average. This
alue appears reasonable; the Electric Power Research Institute’s
EPRI) hybrid electric working group suggests 0.26 kWh/mile for a
ompact sedan [11].
The duty cycle profile derived from this model is used here as
ower-based “C-rate”, the discharge power rate of a battery nor-
alized to the total energy content. For example, for a 16 kWh

attery a 16 kW load would be defined as having a discharge power
ith a 1 C-rate, 32 kW would be a 2 C-rate, etc. (in this case we

ig. 3. Example of relationship between acceleration (red) and power required (in C-rate
eceleration can lead to regenerative braking if it is significant—in this case, around 7% o
1590 kg × 1 = 1590 N
1/2 × 1.23 kg m−3 × [10m/s]2 0.28 × 2.67 m2 = 45.8 N
0.01 × 1590 kg × 9.8 m s−2 = 156 N

are using power instead of the more common electronic current
in Amps and Ah, for ease of calculation during economic analy-
ses). By normalizing to cell energy and using a C-rate to determine
power/current loads, the testing cycle can be run on any individual
cell.

Under regenerative braking conditions, the battery pack will be
charged if the deceleration provides more power than used by the
constant base load (Fig. 3). The cumulative distribution of power
levels over a driving cycle was calculated to illustrate the amount of
time during the test cycle that the battery was under various loads
(Fig. 4). The near-vertical portion is due to the base load that is con-
stant when there is nearly no force required for motion. As a result
of the relatively large energy-to-power ratio for a battery pack of
this size, the absolute value of the C-rate imparted to the battery
exceeds 1 only 20% of the time. The maximum absolute C-rate value
was 2.85. This value is modest compared to the demonstrated rate
capability of the tested cells, which are qualified by the vendor to
a C-rate of at least 20C.

2.3. Cell acquisition and cycling

Thirteen cells were purchased at three separate times, and came

from four different fabrication lots. Due to equipment limitations,
testing start dates were staggered as new equipment became avail-
able. All testing was conducted with Arbin BT2000 series battery
cyclers. The inception of testing of the first 4 cells (lot 1) was fol-
lowed after 3 months by 4 more cells (lots 2 and 3), in turn followed

, blue) for trips 1 and 4. A negative C-rate corresponds to discharge rate from pack.
f the energy is regained via regenerative braking.
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Table 3
Testing regimens used on cells.

Test cycle Length of first V2G
discharge (s)

Voltage at end of second
V2G discharge

1 0 NA
2 995 NA
ig. 4. Cumulative distribution function of power requirements for daily driving
all four trips). Given large pack size the current rates are low most of the time. The
ear-vertical portion is a result of times when velocity and acceleration are low and
he base load to run accessories dominates the power needs for vehicle.

y 5 more cells (lot 4) after another 4 months. Cells from lot 1 under-
ent 2400 cycles, lots 2 and 3 completed 2000 cycles and lot 4 had

eached 1000 cycles when this paper was submitted. Again, each
ycle in this case represents a single driving day, so some of these
ells were tested the equivalent of at least 5 driving years.

The cells were not thermally controlled and were kept at the
ab ambient temperature, which varied from 24 to 27 ◦C, but was

ost commonly approximately 25 ◦C. Data published by the man-
facturer indicating good cell stability and uniformity up to at least
0 ◦C imply that the cell temperatures used in this testing were
ot high enough to cause excess degradation, nor were they vari-
ble enough to significantly affect the data [12]. A thermocouple
as connected to one cell and temperature was monitored though

everal full driving cycles; the cell temperature did not increase
ignificantly, as expected from these cells, which have been engi-
eered for high rate applications and so do not heat up significantly
nder the nominally low C rates experienced.

The cells were subjected to one of five different driving day test-
ng cycles. Test cycle 1 corresponded to driving only and is shown in
ig. 5, while each of the other 4 cycles consisted of the same daily

uty cycle, with varying amounts of additional V2G discharge in
he afternoon hours. The V2G discharge consisted of a specific time
t a galvanostatic C/2 rate (1.15 A in this case), and in and a cutoff
oltage of 2.5 V was used to avoid over-discharge. A C/2 discharge
ate was chosen to represent V2G simulation because it scales to an

Fig. 5. Test current profile used to simulate driving day for cells showing all trips. T
3 1715 NA
4 1715 3.2
5 1715 2.5

approximate 8 kW rate of withdrawal from the 16 kWh pack. The
rate might be forced lower depending on the infrastructure avail-
able in the home; a 240 V, 30 A circuit could maintain only 7.2 kW
of energy transfer. This implies the rate of discharge will likely be
below C/2 slightly unless a special circuit is installed. Each cycle
began with a 1C galvanostatic charge of 2.3 A until cells reached a
voltage of 3.6 V followed by a 5 min rest. Then trips 1–3 were exe-
cuted with 5 min rests between each. The V2G discharge then was
conducted. The driving only cells had no V2G discharge (3 cells, one
each from lots 1, 2, and 4). Test cycle 2 had one V2G discharge of
1.15 A for 995 s (3 cells, one each from lots 1, 2, and 4). Test cycle
3 had one V2G discharge lasting 1715 s (3 cells, one each from lots
1, 2, and 4). Test cycle 4 had 2 V2G discharges and was the same as
test cycle 3 with an additional V2G discharge after trip 4 held until
the cell voltage dropped to 3.2 V (3 cells, one each from lots 1, 3
and 4). Test cycle 5 extended the second V2G discharge until 2.5 V
(1 cell from lot 4). This test regimen is indicated in Table 3.

The duration of the rest period the end of each driving day simu-
lation was adjusted such that each test case, regardless of the degree
of V2G discharge, lasted 3 h. This regimen was repeated for 100
cycles, and then the cells were put through a C/2 charge/discharge
“measurement” cycle to 100% state of charge/discharge to mea-
sure cell capacity. This started with charging the cell 1.15 A until
it reached a voltage of 3.6 V. Then the voltage was held constant
until the current tapered to 0.01 A to ensure the cells were fully
and equally charged. After a 5-min rest the cells were discharged at
1.15 A rate until voltage fell below 2.5 V (i.e. 100% DoD). The capac-
ity measured through this discharge was defined as the cell capacity
at that point in the testing. To avoid biasing the results with differ-
ing rest periods between test cycle and baseline cycle the baseline
check automatically began 5 min after completion of the 100 test
cycles.
3. Results and analyses

The cells from different lots did not behave identically. Lot 1
showed a significant degree of variation in capacity retention as the

he times after trips 3 and 4 when V2G discharge was simulated are indicated.
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from those typically published (i.e. potential-limited galvanostatic
ig. 6. Degradation of cells vs. driving days simulated (a) full range, (b) same infor-
ation zoomed and (c) with highly variable cells from lot 1 dropped.

ells were cycled (Fig. 6a and b), with cells increasing and decreas-
ng in capacity as they were cycled, although the overall trend was
ownward. Lots 2–4 showed remarkable consistency in degrada-
ion (Fig. 6c). It is possible that the unusual scatter observed in the
ata from lot 1 is somehow linked to the integrity of the BT2000
est unit used for these cells (on which only these 4 cells have been
ested), though such a link has not been quantified. For this reason
hey are not used in the final statistical analysis.

Because the cells from different lots might have undergone
ifferent formation (at the factory) before testing started it was
ecessary to find a way to determine an initial capacity in a consis-
ent manner. One common approach is to measure capacity after
specific number of identical low rate cycles. We considered this
nsuitable because we felt it was desirable to avoid running a large

umber of cycles on the battery in an attempt to normalize them
nd thus decrease capacity by an unknown amount. The next alter-
ative we considered was to measure the capacity after an arbitrary
umber of cycles, but with five different possible test cycles this
Fig. 7. Laboratory results overlaid onto VARTA curves illustrating more linear
response in cycle life as a function of depth of discharge for the cells tested.

was also unsatisfactory. Instead, we performed a linear regression
on each cell data set to back-predict their initial capacity in terms
of cycles tested. The short prediction range made this an accept-
able solution because any deviations from the true value would
not affect the prediction strongly. Indeed, predicted initial values
were close to measured initial values in most cases. This capacity
was then used to determine the relative loss as a function of cycles
instead of using a numerical value for the total energy content. A lin-
ear regression of relative capacity degradation vs. cycles was then
used to predict when the cell would reach 80% of original capacity.
This information was used to predict the cycle life vs. DoD/cycle.

Overlaying the values on the VARTA Automotive plot shows
that DoD/cycle appears to have a smaller effect on degradation
with these cells compared to those reported previously, particu-
larly given that a single “cycle” in this case was representative of
an entire day’s worth of driving. This appears to indicate that the
portion of a cell’s capacity used, or the ultimate depth of discharge,
is not as important with A123 systems based cells as with the cells
on VARTA plot labeled old Li-ion and NiMH (Fig. 7), where DoD
is a key variable [13]. As the degree of discharge per driving day
increases, the predicted cycle life does not fall as rapidly as con-
ventional data analysis commonly predicts. For example, in cells
discharged to 95% DoD per cycle, our measurements predict that
5300 cycles will be needed before reaching 80% of initial capacity
instead of around 1500 cycles as indicated by the VARTA data. Also,
daily cycles with shallower DoD values do not appear to increase
cycle life as significantly as those indicated from the VARTA anal-
yses. This suggests that a greater portion of the cell capacity could
be used during each cycle than would be suggested by the VARTA
plot if applied to this chemistry.

Fig. 8 shows data for a C/2 discharge of the same cell (from lot 3)
after 0, 1000, and 2000 simulated driving days. The potential profile
in the voltage plateau region was essentially unchanged after 2000
cycles, indicating that internal resistance did not change signifi-
cantly, as the differential in cell polarization under discharge before
and after the 2000 cycles was imperceptible. The decrease in deliv-
ered capacity after cycling is manifested as a departure from the
discharge plateau after 1.82 Ah of discharge for the heavily cycled
cell vs. 1.91 Ah for the uncycled cell (Fig. 8b).

The test profiles used on these cells were very different
charge/charge at intermediate rates), so a different approach is
used here to quantify the capacity fade as a function of battery
use. Simple accounting for the %DoD at end-of-cycle DoD does
not accurately represent the amount of energy processed by a
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cell in different categories of charge and discharge. It was assumed
that these different cycling regimes could be represented by driv-
ing discharge, driving recharge (from regenerative braking), energy
arbitrage discharge, and recharge. The first two are dynamic, while

Fig. 10. Capacity degradation as a function of energy processed for two cells tested
ig. 8. Voltage profiles of a cell that reached an ultimate DoD value of 73% each
riving day. The initial, 1000th and 2000th baseline discharge curves are shown.

ell per cycle. For example, the ratio of charging from regenera-
ive braking to discharging produced by the model was 0.076; if
00% energy efficiency is assumed, then at least 14% more energy

s exchanged during a driving cycle beyond the energy associated
ith the indicated DoD value. To this end, percent initial capacity
as related to the total capacity (in Ah) processed by each cell, a

alue that included the discharge for driving, charging from regen-
rative braking, charging during the evening to recharge the battery
or the next day, baseline check. This value can be directly related
o the moles of Lithium ions transferred between the electrodes
uring use.

Data collected from cell lot 1 showed inconsistencies, again, con-
istent with the capacity vs. cycle life for these cells. However, the
econd set of cells, lots 2–4, showed a high level of consistency
n degradation with respect to integrated Ah processed; the cells
ppear to degrade in response almost exclusively to capacity pro-
essed as opposed to the number of cycles, or the DoD per cycle
Fig. 9a). The sample analysis based on energy processed (in Wh)
howed marginally better results and were more directly applica-
le to modeling the energy arbitrage potential of the cells (Fig. 9b).
here appeared to be a slight difference in slope between cells.
hose with greater energy arbitrage discharge appeared to degrade
lightly slower. Comparing two specific cells from lot 2 over a sim-
lar range of energy processed shows a different but statistically
nsignificant slope (at the 95% level) (Fig. 10). Adding cells from

ot 4 tightens the 95% confidence interval lessening the overlap of
he two slopes, at the 95% level, but they are still not statistically
ifferent.
Fig. 9. Degradation as a function of (a) capacity (Ah) processed by cell or (b) energy
(Wh) processed by cell for all but lot 1 cells. Both appear linearly related, as expected
given the nominally linear discharge profile of the LiFePO4/graphite system.

To investigate this further, a multiple linear regression was con-
ducted to relate the degradation of the cells to the type of cycling
incurred. The first step was to break the total Wh processed by each
with contrasting end-of-cycle depth of discharge values (35% and 73% DoD). The
slight observed difference would indicate less degradation for higher DoD/cycle cell,
however the 95% confidence interval of slopes overlaps for these fits, so they are not
statistically discernable.
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ig. 11. Q–Q plot shows errors are normally distributed for multiple linear regres-
ion. The line represents expected values for a normal distribution.

he last two categories are constant rate. The values were normal-
zed to the initial capacity of each cell to remove variation from
iffering initial capacity. Regenerative braking recharge was highly
orrelated with the driving discharge because the simulation had a
pecific ratio of regenerative braking to driving discharge as defined
y the UDDS. Therefore, regenerative braking was dropped from
he multiple linear regression analysis. Only driving discharge and
nergy arbitrage discharges were considered for the multiple lin-
ar regression, because the other values could be almost perfectly
redicted if these values were known. The errors of the resulting
egression appear to follow the assumption of normality, as shown
n Fig. 11, which indicates that a multiple linear regression can
e used without fear that the errors follow a pattern that would

ndicate some hidden underlying process [14].
The resulting regression appeared linear (adjusted R2 = 0.96).

he relative size of the coefficients implies that the battery usage
ssociated with driving causes more loss in cell capacity per Wh
rocessed than usage associated with V2G load shifting (constant
ate and polarity) (Table 4). The confidence intervals are small
nough that there is no overlap as indicated by the high absolute
alue of the t-stat. The regression relates percent capacity loss to
nergy discharged driving, energy discharged for arbitrage, and ini-
ial capacity. An example is shown in Table 5, where we illustrate
ow a given quantity of energy processed in a particular mode can

e used to predict the percent capacity loss. Because all cells under-
ent the same cycling associated with driving, the differences in

hese coefficients relates not just to the difference in degradation
rom dynamic discharge vs. constant discharge, but also to other

able 4
esults of multiple linear regression.

Coefficient Value t-Stat Confidence interval

Wh discharged driving −5.99E−5 −34.9 1.71E−6
Wh discharged arbitrage −2.71E−5 −14.6 1.85E−6
Constant 1.00 2120 4.7E−4

able 5
xample using results of multiple linear regression to calculate battery capacity
egradation.

Coefficient Value Normalized Multiplied by
coefficient

Wh discharged driving 3000 Wh 462 −0.027
Wh discharge arbitrage 1500 Wh 231 −0.0062
Initial capacity 6.5 Wh 1
Capacity remaining 97%
Sources 195 (2010) 2385–2392 2391

hidden variables such as cell aging, which is thought to be minimal
over the approximately 12 months of testing performed for this
study [15].

4. Discussion/conclusions

The loss of capacity as a function of driving days shown in Fig. 6
indicates that the degradation of these high-power LiFePO4-based
cells does not follow the same pattern as commonly used previ-
ous reported results and models [16,17]. These data reveal that in
benchtop testing of simulated driving conditions, the cell DoD does
not have nearly as great an effect on lifetime as previously reported
values for other battery chemistries (commonly those based on
layered metal oxide cathodes such as LiMO2 where M is some com-
bination of Co, Ni, and Mn) [14,15,18]. This result implies that a
LiFePO4/graphite-based PHEV battery pack with properly matched
cells can be cycled though a very broad state of charge range with-
out incurring any significant increase in capacity loss as a function
of Ah or Wh processed. In principle, a PHEV can utilize a smaller
battery and use a greater proportion of the battery, however doing
so might make discharge rate and associated ohmic heating more
of an issue.

After 2000 cycles the low rate discharge potential profile
appears very similar to that collected before cycling started, and a
very small fraction of the initial capacity has been lost. This obser-
vation is consistent with the hypothesis that only a minimal Solid
Electrolyte Interphase (SEI) layer must be forming during cycling of
these cells, and that the mechanical cycling of the electrodes does
not induce loss of connection and capacity fade. The tendency for
increased I2R cell heating after many cycles is not present (due to
the relatively low C-rates encountered), and so failure mechanisms
associated with this effect are minimal.

The comparison between capacity fade as a function of cycle
number and Ah processed provides several key insights to the
processes at work in these batteries. First, the dominant cell degra-
dation method is not dependant upon depth of discharge, or rate
of discharge (at least up to the 3C spikes encountered in this test
regimen). For example, if only the data shown in Fig. 6 were used to
examine capacity loss, the conclusion might be drawn that degra-
dation was indeed a function of depth of discharge. However, we
show in Fig. 9 that, in fact, the cycle DoD and relative fraction of
low-rate galvanostatic cycling vs. acceleration/regenerative brak-
ing current pulses are not important even over thousands of driving
days. Rather, it is the integrated number of lithium ions that have
been intercalated/de-intercalated into the electrodes, regardless of
the DoD at which these events occur. Nevertheless, there are still
other factors of importance. The multiple regression shows there
is a difference between driving energy withdrawn and constant
discharge. With the low rate constant discharge associated with
roughly half the degradation of the dynamic discharge (−6.0E−3%
and −2.7E−3% for 1 normalized Wh). For this reason, using con-
stant discharge degradation to predict driving degradation is likely
inaccurate, and correction factor attributed to the kind of cycling
encountered is prescribed.

The literature commonly indicates that the dominate mecha-
nisms for capacity loss in Li-ion cells are (1) the formation of a
resistive and progressively Li-consuming interfacial layer between
the functional graphite at the anode and the electrolyte, and (2) the
physical degradation of active materials and electrode structures
[19]. Our data indicate a much lower loss of capacity as a function of

cycles and Ah processed, a result consistent with the use of high per-
formance nano-structured electrode (cathode) materials that are
much more physically stable during use and so do not degrade. The
remaining loss in capacity is likely due to anode interfacial film of
Li2O/LiF/Li2CO3/other formation [20]. In most interpretations, the
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oss of capacity is correlated to amount of Li that has reacted to
orm the SEI and so is no longer functional in the battery function.
he fact that we observed little to no relationship between DoD and
apacity fade supports the idea that the SEI formation at the anode
ccurs at the same rate regardless of state of charge and degree
f graphitic lithiation. A recent capacity degradation model is con-
istent with this hypothesis; the anode potential was not varied
ignificantly during simulation and so depth of discharge was not
early as important as the time-integrated current of Li-ions the
EI was driven to process during cycling [17]. Higher rate cycling
auses more rapid capacity loss. This is also consistent with the
iterature in several ways: at higher rates greater overpotentials
re observed at the electrode surfaces and will therefore slightly
nhance the rate SEI formation. Local heating at the electrode sur-
ace at high rates could also increase the rate of SEI formation. It
hould also be noted that the cells were kept at room temperature
hroughout the test mainly for convenience. It is acknowledged,
owever, that the rate of capacity loss would almost certainly have
een greater for cells kept at elevated temperatures during testing.
levated and variable temperature testing will be conducted in our
abs to explore this possibility.

. Summary

The composition of a test “cycle” is important when quantifying
attery degradation, and using depth of discharge (DoD) per cycle
s an independent variable when studying capacity fade can be mis-
eading in cases where each cycle is laden with rapid discharge and
harge events. Analyses performed here show that the strongest
ndicator of capacity fade for the type of cell tested (A123 systems

1 Cell) was the integrated capacity or energy processed, regard-
ess of the DoD experienced. Furthermore, statistical analyses show
hat using a PHEV battery for V2G energy incurs approximately
alf the capacity loss per unit energy processed compared to that
ssociated with more rapid cycling encountered while driving, and
oD was not important in either case except as a reflection of
nergy processed. The percent capacity lost per normalized Wh or
h processed is quite low: −6.0 × 10−3% for driving support and
2.70 × 10−3% for V2G support. These values show that several

housand driving/V2G driving days incur substantially less than
0% capacity loss regardless of the amount of V2G support used.
owever, V2G modes that are more intermittent in nature will

ead to more rapid battery capacity fade and should be avoided
o minimize battery capacity loss over many years of use.

ist of symbols
HEV plug-in hybrid electric vehicle
EV battery electric vehicle
2G vehicle-to-grid energy transfer
HTS National Household Transportation Survey
OS Boston, MA
OC Rochester, NY
HL Philadelphia, PA
DDS Urban Dynamometer Driving Schedule
Wh kilowatt hours
mass
acceleration
density of air
vehicle velocity

d coefficient of drag

[

[
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A frontal area of vehicle
Crr dimensionless coefficient of rolling resistance
g acceleration of gravity
�t time step in s
V volt
A amp
DoD depth of discharge
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